A Mathematical Introduction to LaTeX CUMC – CCÉM 2013. Montréal. Québec Elana Hashman¹ Who? From? University of Waterloo When? July 13, 2013

¹French Translations by David McLaughlin

	Table of contents
Introduction	
	History
	Setting up
	My first document
Into the Code	
	Document layout
	Templates
	Proof by example
For T _E X experts	
	Some fun tricks
	Macros and Custom Environments
	Graphics
Questions	

A Brief History of $\ensuremath{\mathsf{E}}\xspace{\mathsf{T}}\xspace{\mathsf{E}}\xspac$

 T_EX is almost certainly older than you.

- "TEX" developed by Don Knuth in 1978
- Pronounced "tech", from Greek τεχνη
- Markup language, like HTML

- LATEX was derived from TEX by Leslie Lamport in 1985
- Idea: Focus on content while LATEX takes care of the presentation for you

Get the software

LATEX is free, platform-independent software.

pdflatex package for OS X/UNIX-based platforms
 LyX for WYSIWYG: http://www.lyx.org
 Online: http://scribtex.com

My first document

Hello, world!

Code for my first document

LATEX code:

\documentclass{article}
\begin{document}
Hello, world!
\end{document}

Contrast with a similar HTML document:

<html> <body> Hello, world! </body> </html>

Document Layout

1

Document type

- article
- beamer (slides)
- \circ report
- 2 Preamble (header)
 - \circ Include packages
 - \circ Set spacing
 - \circ Declare macros, commands
- 3 Body (content)

Sample templates

See http://hashman.ca/tex for

article.tex,

- report.tex, and
- slides.tex

sample templates.

This gives you some sample preamble information and templates for your use.

$\begin{document}$

Squeeze Theorem.

Let (x_n) , (y_n) and (z_n) be sequences in \mathbb{R} . Suppose $(x_n) \to L$, $(z_n) \to L$, and for all $n \ge n_0$, we have $x_n \le y_n \le z_n$; then $(y_n) \to L$.

Proof. Let $\varepsilon > 0$. Since $(x_n) \to L$, there is some integer n_1 such that $\forall n \ge n_1$, we have $|x_n - L| < \varepsilon$.

Similarly, for the same ε , since (z_n) converges, $\exists n_2 \in \mathbb{N}$ such that $\forall n \ge n_2$, we have $|z_n - L| < \varepsilon$.

Then take $N = \max(n_0, n_1, n_2)$, and let $n \ge N$. For all $n \ge N$, we must have

$$L - \varepsilon < x_n \le y_n \le z_n < L + \varepsilon$$

which implies $|y_n - L| < \varepsilon$. So (y_n) converges to L.

Squeeze Theorem Code, I

```
{\bf Squeeze Theorem.}
```

```
Let (x_n), (y_n) and (z_n) be sequences in \lambda \in R.
```

```
Suppose (x_n) \ to \ L, (z_n) \ to \ L,
and for all n \ ge n_0, we have x_n \ le y_n \ le z_n; then (y_n) \ to \ L.
```

Squeeze Theorem Code, II

```
\begin{proof}\\ Let $\epsilon > 0$. Since $(x_n) \ to L$,\\ there is some integer $n_1$ such that $\forall n \ge n_1$, we have $$|x_n - L| < \epsilon$.\\[2mm]
```

Similarly, for the same $\ \ epsilon$, since (z_n) converges, $\ \ z \in n_2 \in n_2 \in n_2 \in n_2$, we have $|z_n - L| < epsilon$. (2mm]

Squeeze Theorem Code, III

Then take $N = \max(n_0, n_1, n_2)$, and let $n \ge N$. For all $n \ge N$, we must have

which implies \$|y_n - L| < \epsilon\$.
So \$(y_n)\$ converges to \$L\$.
\end{proof}</pre>

Terminology

- **Control characters:** \$ % # & ^_ { }, etc.
- Command: sequence beginning with '\', e.g. \bf or \mathbb{R}
- Environment: section delimited by commands, with special properties, e.g. \begin{proof} and \end{proof}
- Math mode: delimited by \$'s

Common math mode commands

Display	₽TEX code
x ⁱ⁺¹	x^{i+1}
$\frac{1}{2}$	$frac{1}{2}$
$\sqrt{b^2-4ac}$	\sqrt{b^2-4ac}
In e	$\label{ln}e$
$\lim_{n\to\infty}(x_n)$	$\lim_{n\to\infty} (x_n)$
$\cos(2\pi n)$	$\cos{(2{\pi})}$
$\sum_{i=1}^n s_i b_i$	\sum_{i=1}^n s_i b_i

Common math mode commands, continued

Display	ATEX code
$10 \equiv 3 \pmod{7}$	10 \equiv 3 \pmod{7}
$\int_{a}^{b} f(x) dx$	\int_a^b f(x)dx
\mathcal{P}	\mathcal{P}
$ au \in \chi$	\tau \epsilon \chi
$A \cap B \neq \varnothing$	A \cap B \ne \varnothing
$\beta = \{v_1, \ldots, v_n\}$	\beta = $\{v_1, \ \ v_n\}$
$f: S \to \mathbb{R}$	f \colon S \to \mathbb{R}

DON'T

DO

Tricks for LATEX veterans!

- ...use arrays for matrices. Use a matrix environment. ...forget about the '*' commands.
- ...let people tell you you're using LATEX "wrong."
- ... be afraid to write macros to make your code shorter.

- ...use a good text editor.
- ...be willing to learn all the time. The learning curve is steep but your speed improves quickly.
- ...use Google (or your search engine of choice). It is your friend.
- ...use LATEX for your assignments. More legible work means TAs are more forgiving on marking!

Macros and Other User-Defined Objects

- $\blacksquare \quad \mathbb{R}: \mathbf{R} \in \mathbb{R}$
- dim(V): \operatorname{dim} vs. \dim
 - $\overline{\int}_{P}(e^{x})$: \overline{\int} vs. \uint
 - \subseteq : \subseteq vs. \ss
- Centering math in enumerate environment without moving the numbers
- Question counters

 Using the provided document structuring commands to easily generate a table of contents, title page, etc.

My take on this can be found in the macros.sty file on my website.

TiKZ and Other Graphics Packages

Graphs

Diagrams

fin.

More resources:

- My website: http://hashman.ca/tex
- Wikibooks' LATEX guide:
 - http://en.wikibooks.org/wiki/LaTeX
- David Wilkins' Primer:

http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/

 Random math grad students, particularly when fretting over their theses