
Operating Within Normal Parameters:
Monitoring Kubernetes

Elana Hashman
Two Sigma Investments, LP

SREcon 2019 Americas – Brooklyn, NY

@ehashdn :: #SREcon

Disclaimer
This document is being distributed for informational and educational purposes only and is not
an offer to sell or the solicitation of an offer to buy any securities or other instruments. The
information contained herein is not intended to provide, and should not be relied upon for,
investment advice. The views expressed herein are not necessarily the views of Two Sigma
Investments, LP or any of its affiliates (collectively, “Two Sigma”). Such views reflect the
assumptions of the author(s) of the document and are subject to change without notice. The
document may employ data derived from third-party sources. No representation is made by
Two Sigma as to the accuracy of such information and the use of such information in no way
implies an endorsement of the source of such information or its validity.

The copyrights and/or trademarks in some of the images, logos or other material used herein
may be owned by entities other than Two Sigma. If so, such copyrights and/or trademarks are
most likely owned by the entity that created the material and are used purely for identification
and comment as fair use under international copyright and/or trademark laws. Use of such
image, copyright or trademark does not imply any association with such organization (or
endorsement of such organization) by Two Sigma, nor vice versa.

@ehashdn :: #SREcon

Outline

 A brief introduction to “observability”
 Service Level Objectives (SLOs), a measure of “normal”
 Collecting Kubernetes metrics: what’s available?
 How-to: A minimal FOSS monitoring stack for Kubernetes
 Debug some common problems using our metrics!

@ehashdn :: #SREcon

What is “observability?”

A fancy name to make
monitoring more marketable?

@ehashdn :: #SREcon

Why are we even here?

To operate systems that
make users happy.

@ehashdn :: #SREcon

When something goes wrong

Observability lets you answer
what, where, how, and why

@ehashdn :: #SREcon

How do you agree on
something gone wrong?

Service Level Objectives, perhaps

@ehashdn :: #SREcon

Defining Service Level Objectives

 Service Level Objectives (SLOs) are a formal specification
of what your team considers normal for a service

 SLOs cover areas (availability, latency, capacity, etc.) and
specific targets for quality of service

 Areas and targets differ depending on circumstances
– e.g. development vs. production

@ehashdn :: #SREcon

Defining Service Level Objectives
 Who are your users and how do they interact with your cluster?

– Do you have an intermediary platform?
– What are their performance expectations?

 What capacity and load are you expecting?
– How many nodes per cluster and what size?
– How many users? What is their average workload size?

@ehashdn :: #SREcon

Defining Service Level Objectives

 SLOs communicate your service expectations with users
 Some Kubernetes-specific examples:

– Availability: Control plane has 99% monthly uptime
– Latency: Valid Pods should start within 5s for p99
– Capacity: Cluster accommodates 50 running Pods per user

@ehashdn :: #SREcon

Defining Service Level Objectives

 ▪ SLOs are flexible and context-dependent

✔ SLOs set customer expectations through a
commitment to quality of service

❌ SLOs are not a measure of your team’s ability to
deliver 9’s

@ehashdn :: #SREcon

Defining Service Level Objectives

 Can’t commit to quality of service targets if you have no
idea what your quality of service is

 Sample workloads provide data for performance tuning
and iteration on SLOs

 Must include a monitoring stack in every cluster at launch
– But how??

@ehashdn :: #SREcon

Case study: instrumenting Kubernetes

@ehashdn :: #SREcon

Collecting Kubernetes metrics

 What sources of metrics are available?
 How can metrics be analyzed, aggregated, and visualized?

@ehashdn :: #SREcon

What sources of metrics are available?

❤️

Timeseries Value
up{job="kube-apiserver",instance="api-1"} 1

@ehashdn :: #SREcon

What sources of metrics are available?

Out-of-the-box metrics
 Most Kubernetes components export Prometheus metrics

– etcd (/metrics)

– API servers (/metrics)

– Kubelets (/api/v1/nodes/<node>/proxy/metrics)

– cadvisor (/api/v1/nodes/<node>/proxy/metrics/cadvisor)

– Service endpoints (/metrics via cluster service discovery)

@ehashdn :: #SREcon

What sources of metrics are available?

Official Kubernetes metric exporters
 kubernetes/kube-state-metrics (stable)

– Prometheus adapter for cluster state
 kubernetes-incubator/metrics-server (alpha)

– Aggregates metrics from kubelets (not Prometheus format)
– Provides programmatic access for autoscalers, kubectl top, etc.

 kubernetes-retired/heapster (deprecated)
– Similar to metrics-server, used InfluxDB backend storage

@ehashdn :: #SREcon

What sources of metrics are available?

Even more metrics from Prometheus exporters!
 prometheus/node_exporter

– System metrics for your Kubernetes Nodes
 prometheus/blackbox_exporter

– Probes arbitrary endpoints via HTTP, HTTPS, DNS, TCP, or ICMP

 Write your own
 Many other open source options

@ehashdn :: #SREcon

What types of metrics are available?

 Container CPU, memory, network utilization: cadvisor
 General Pod info: kube-state-metrics
 Node performance info: node_exporter
 General cluster info: many sources
 Control plane info: etcd, API servers

– Sample metric queries → see talk resources

@ehashdn :: #SREcon

How-to: Let’s deploy this!

A minimal monitoring stack for Kubernetes

 worker
 node container runtime

pods master node

api-serveretcd

 master node

api-serveretcd

 master node

api-serveretcd

kubelet cadvisor

 worker
 node container runtime

kubelet cadvisor

Prom KSM

A minimal monitoring stack for Kubernetes

 worker
 node container runtime

pods master node

api-serveretcd

 master node

api-serveretcd

 master node

api-serveretcd

kubelet cadvisor

 worker
 node container runtime

kubelet cadvisor

Prom KSM
scrape targets

@ehashdn :: #SREcon

Run your monitoring stack on Kubernetes!
 Credentials for scraping are way easier to manage

– Grant a ServiceAccount granular permissions!
– ServiceAccount tokens get automatically rotated!

 Kubernetes abstractions and architecture are powerful
– Built-in service discovery for scraping!
– Kubernetes Deployments keep your Pods alive!
– Data plane is resilient to control plane failures!

@ehashdn :: #SREcon

Let’s not worry about high availability!
 High availability is not as simple as “run two replicas”

– Two Prometheus replicas doubles (high) scrape load
– Prometheus replicas are stateful, with subtly different state

 kube-state-metrics is stateless, so why not?
– Prometheus counters monotonically increase but differ between replicas
– You could scrape all of them simultaneously and deduplicate client-side?

 >:(

@ehashdn :: #SREcon

It’s okay for Prometheus to not be a panacea

 Set up backup monitoring jobs
– Run them off-cluster
– Kubernetes’ scheduling gives us 99% uptime for ~free
– Alert when Prometheus or KSM has extended downtime

 This architecture avoids data integrity issues and
deployment complexity, for way less work

@ehashdn :: #SREcon

Metric analysis, aggregation, visualization

 Prometheus query language (PromQL) powers metric
analysis and aggregation; Prometheus UI for visualizations

 Grafana accepts Prometheus data sources for dashboards
 Can perform arbitrary processing on metrics in JSON format

– Prometheus format JSON: use Prometheus query API
– Metrics API format JSON or gRPC: use Metrics Server API

@ehashdn :: #SREcon

How can we use this data for debugging?

@ehashdn :: #SREcon

Service Degradation: Node is down

 Obvious: Prometheus scrape job is down
up{job="kube-nodes"} != 1

 Less obvious: Grey failure indicated by unusually slow
scrape time
scrape_duration_seconds{job="kube-nodes"} > 2

@ehashdn :: #SREcon

Service Degradation: Customer can’t launch Pods

 Obvious: Customer has hit their quota limit
sum(kube_resourcequota{namespace="foo",resource="cpu",type="used"})
 / kube_resourcequota{namespace="foo",resource="cpu",type="hard"}
 > 0.95

 Less obvious: Customer has overprovisioned their workloads
sum(container_cpu_usage_seconds_total:rate1m{namespace="foo"})
 / kube_resourcequota{namespace="foo",resource="cpu",type="hard"}
 < 0.35

@ehashdn :: #SREcon

Service Degradation: API Server is slow

 Obvious: API server calls are slow
histogram_quantile(
 0.99,
 sum(rate(apiserver_request_latencies_bucket[1m]))
 by (le, verb)
)

@ehashdn :: #SREcon

@ehashdn :: #SREcon

Service Degradation: API Server is slow

 Less obvious: API server metrics cap out between
125ms—8s because of default bucketing???

@ehashdn :: #SREcon

Recap

 We learned how to select Service Level Objectives
 We explored FOSS monitoring solutions for Kubernetes
 We built a minimal monitoring stack
 We used it to debug some production issues
 Try it for yourself: check out the sample code on GitHub

@ehashdn :: #SREcon

Questions?

@ehashdn :: #SREcon

Thanks to:

Two Sigma Investments, LP
Liz Fong-Jones, Frederic Branczyk

Talk resources: https://hashman.ca/srecon-2019

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

