

The Black Magic of Python Wheels

Elana Hashman
Python Packaging Authority

PyGotham 2018 – New York, NY

@ehashdn

Disclaimer
This document is being distributed for informational and educational purposes only and is not
an offer to sell or the solicitation of an offer to buy any securities or other instruments. The
information contained herein is not intended to provide, and should not be relied upon for,
investment advice. The views expressed herein are not necessarily the views of Two Sigma
Investments, LP or any of its affiliates (collectively, “Two Sigma”). Such views reflect the
assumptions of the author(s) of the document and are subject to change without notice. The
document may employ data derived from third-party sources. No representation is made by
Two Sigma as to the accuracy of such information and the use of such information in no way
implies an endorsement of the source of such information or its validity.

The copyrights and/or trademarks in some of the images, logos or other material used herein
may be owned by entities other than Two Sigma. If so, such copyrights and/or trademarks are
most likely owned by the entity that created the material and are used purely for identification
and comment as fair use under international copyright and/or trademark laws. Use of such
image, copyright or trademark does not imply any association with such organization (or
endorsement of such organization) by Two Sigma, nor vice versa.

Wheels/Black Magic FAQ

Q: But I’m not a witch?!

A: Sometimes the greater good requires a little sacrifice.

Topics

 Python packaging and distribution
 ELF (Executable and Linkable Format) files
 Dynamic vs. static linking
 ABI (Application Binary Interface)/Symbol

versioning

Outline

 A brief history of Python packaging and distribution
 An overview of the wheel
 Why we need native extensions
 How do native extensions even work, really?

– What are manylinux and auditwheel for?
 How you can get involved

A Brief History of Python Packaging: Eggs

 Organically adopted (no guiding PEP)
 No standard many incompatible → many incompatible

implementations
 Designed to be directly importable, could include

compiled Python (.pyc files)

Python Packaging Reinvented: The Wheel

 Adopted via PEP 427
 Follows the PEP 376 standard for distributions and

PEP 426 standard for package metadata
 Designed for distribution, cannot include .pyc files

(but may include other pre-compiled resources)

Wheels “make it easier to roll out” Python

 Pure wheels
– Only contain Python code
– May target a specific version of Python

 Universal wheels
– Python 2/3 compatible pure wheels

Extension wheels

??? pip install wheel
python setup.py bdist_wheel

pip install wheel
python setup.py bdist_wheel

Wheels “make it easier to roll out” Python

 Pure wheels
– Only contain Python code
– May target a specific version of Python

 Universal wheels
– Python 2/3 compatible pure wheels

 Extension wheels
– ???

Extensions without binary distributions

$ pip install cryptography # source-only download

...
 c/_cffi_backend.c:2:10: fatal error: Python.h:
No such file or directory
 #include <Python.h>
 ^~~~~~~~~~
 compilation terminated.
 error: command 'x86_64-linux-gnu-gcc' failed
with exit status 1

$ sudo apt install python-dev # get Python.h

Extensions without binary distributions

$ pip install cryptography

...
 c/_cffi_backend.c:15:10: fatal error: ffi.h: No
such file or directory
 #include <ffi.h>
 ^~~~~~~
 compilation terminated.
 error: command 'x86_64-linux-gnu-gcc' failed
with exit status 1

$ sudo apt install libffi-dev # get ffi.h

Extensions without binary distributions

$ pip install cryptography

...
 build/temp.linux-x86_64-2.7/_openssl.c:498:10:
fatal error: openssl/opensslv.h: No such file or
directory
 #include <openssl/opensslv.h>
 ^~~~~~~~~~~~~~~~~~~~
 compilation terminated.
 error: command 'x86_64-linux-gnu-gcc' failed
with exit status 1

$ sudo apt install libssl-dev # get opensslv.h

Extensions without binary distributions

$ time pip install cryptography

Successfully installed asn1crypto-0.24.0 cffi-
1.11.5 cryptography-2.3.1 enum34-1.1.6 idna-2.7
ipaddress-1.0.22 pycparser-2.19 six-1.11.0

real 0m16.369s
user 0m15.823s
sys 0m0.627s

Extensions with binary distributions

$ time pip install cryptography # prebuilt binary

Successfully installed asn1crypto-0.24.0 cffi-
1.11.5 cryptography-2.3.1 enum34-1.1.6 idna-2.7
ipaddress-1.0.22 pycparser-2.19 six-1.11.0

real 0m1.088s
user 0m0.980s
sys 0m0.108s

What sort of black magic is this? ✨🔮

Extension Wheels are safe to pip install!

 Installing Python native extensions without wheels is painful
 Conda was developed to address this gap: why not use that?

– Like eggs, Conda was not adopted by a PEP
– Conda packages are not Python-specific, not supported by PyPI
– Conda packages are not compatible with non-Conda

environments
 Wheels are compatible with the entire Python ecosystem

What is a Python (Native) Extension?

 Native: the code was compiled specifically for my
operating system

 Extension: this library extends Python’s functionality
with non-Python code

 Example: cryptography
– It uses CFFI: the “C Foreign Function Interface” for

Python

Python code is not just Python.

For Python to harness its full potential,
it must be able to depend on C libraries.

C is a compiled language

// hello.c

#include<stdio.h>

int main(void) {
puts("hello

 world");
}

a.out (hexadecimal)

0000000 7f45 4c46 0201 0100
0000008 0000 0000 0000 0000
0000010 0300 3e00 0100 0000
0000018 5005 0000 0000 0000
0000020 4000 0000 0000 0000
...

gcc
(compiler)

gcc hello.c hexdump a.out

ELF File

Hexes and ELFs
$ readelf -a a.out
ELF Header:
 Magic: 7f 45 4c 46 02 01 01 00
 00 00 00 00 00 00 00 00
 Class: ELF64
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: DYN (Shared object file)
 Machine: Advanced Micro Devices X86-64
...

Hexes and ELFs
$ readelf -a a.out
...

Program Headers:

 Type Offset VirtAddr PhysAddr
 FileSiz MemSiz Flags Align

 INTERP 0x0000000000000238 0x0000000000000238 0x0000000000000238
 0x000000000000001c 0x000000000000001c R 0x1

 [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

ELF interpreter

Hexes and ELFs
$ readelf -a a.out

...

Relocation section '.rela.plt' at offset
0x4d0 contains 1 entry:

 Offset Info Type
000000200fd0 000200000007 R_X86_64_JUMP_SLO

 Sym. Value Sym. Name + Addend
0000000000000000 puts@GLIBC_2.2.5 + 0

Symbol Version

Hexes and ELFs
$ readelf -a a.out

...
Version needs section '.gnu.version_r' contains
1 entry:

 Addr: 0x00000000000003f0 Offset: 0x0003f0 Link: 6
(.dynstr)

 000000: Version: 1 File: libc.so.6 Cnt: 1

 0x0010: Name: GLIBC_2.2.5 Flags: none Version: 2

Symbol Versions in Action
hello.c

#include<stdio.h>
...
puts("hello world");

a.out

.rela.plt
Symbol Name
puts@GLIBC_2.2.5

.gnu.version_r
File Symbol Version
libc.so.6 GLIBC_2.2.5

libc.so.6

.gnu.version_d
Symbol Versions Available:
GLIBC_2.2.5
GLIBC_2.2.6
GLIBC_2.3
...
GLIBC_2.27

.dynsym
Type Name
FUNC puts@GLIBC_2.2.5

What happens when we run this?

 OS parses “magic ELF” text
 OS invokes the ELF interpreter specified by the binary
 ELF interpreter loads any required files with valid versions
 ELF interpreter relocates the program code and

dependencies in memory so that it can run
 This is called dynamic linking

Q: That all sounds really complex. Couldn’t I just
include all the code I need in my output binary?

A: Sure! That’s called static linking.

Q: ...then why doesn’t everyone just do that??

Dynamic vs. Static Linking

 Pros: Dynamic
– Less storage space used
– One copy of a library

= one upgrade

 Cons: Static
– More storage space used
– May store many copies of

one library

 Cons: Dynamic
– Complex
– Needs some kind of

dependency management

 Pros: Static
– Simple
– Dependencies are bundled

with your programs

Conclusion: Static linking is great,
but should be used sparingly.

...so…

What if we “used it sparingly” to build Python
extensions for easier distribution?

But that might not work! What if my C standard
library is too old to run your binary?

...so…

What if we made sure to statically link against
symbol versions that are maximally compatible?

Q: How can we ship compiled Python extensions
compatible with as many systems as possible?

A: Static linking (manylinux)
and symbol versioning (auditwheel).

What are manylinux and auditwheel?

 PEPs 513 and 571 define a set of permitted libraries and their
symbol versions for Linux systems
– “Many” Linux systems are compatible with this standard

 manylinux is both the name of the policy and a Docker image
– manylinux1 (PEP 513): CentOS 5, i386/amd64 architectures

– manylinux2010 (PEP 571): CentOS 6, i386/amd64 architectures

 auditwheel is a tool to enforce the symbol policies

Wheel Builder’s Pipeline for Linux

❷ ❸❶

❶ Add your code, dependencies to the manylinux Docker image
 and build against your supported Python versions/architectures

❷ Inspect the built wheel with auditwheel for compliance

❸ Upload to PyPI!

Python Extension
manylinux

container
auditwheel

inspection
PyPI

Want in on the magic?

 Help us build wheels!
– Feedback enthusiastically welcomed ✨

 pythonwheels.com
– See what packages already build wheels
– Find examples for how to build yours (including Windows, OS X)

 github.com/pypa/python-manylinux-demo
– Simple demo to learn Linux wheelbuilding

Questions?

Questions?

Thanks to:

Two Sigma Investments, LP
Nelson Elhage, Paul Kehrer, Donald Stufft

Talk resources: https://hashman.ca/pygotham-2018

https://hashman.ca/pygotham-2018

Image License Information

 Tree Cat Silhouette Sunset: Public Domain (CC0)
@besshamiti https://plixs.com/photo/3297/tree-
cat-silhouette-sunset

 Happy Halloween! (Costume Dog): Public Domain
(CC0) @milkyfactory https://flic.kr/p/ArW1N9

https://plixs.com/photo/3297/tree-cat-silhouette-sunset
https://plixs.com/photo/3297/tree-cat-silhouette-sunset
https://flic.kr/p/ArW1N9

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

