
The Black Magic of Python Wheels

Elana Hashman
Python Packaging Authority

PyCon US 2019 – Cleveland, OH
@ehashdn



@ehashdn :: #pycon2019

Wheels/Black Magic FAQ

Q: But I’m not a witch?!

A: Sometimes the greater good requires a little sacrifice.



@ehashdn :: #pycon2019



@ehashdn :: #pycon2019

Topics

 Python packaging and distribution
 ELF (Executable and Linkable Format) files
 Dynamic linking
 ABIs (Application Binary Interfaces) and symbol versioning



@ehashdn :: #pycon2019

Outline

 A brief history of Python packaging and distribution
 An overview of the wheel
 Why we need native extensions
 How do native extensions even work, really?

– What are manylinux and auditwheel for?
 How you can get involved



@ehashdn :: #pycon2019

A Brief History of Python Packaging: Eggs

 Organically adopted (no guiding PEP)
 No standard  many incompatible implementations→ many incompatible implementations
 Designed to be directly importable, could include 

compiled Python (.pyc files)



@ehashdn :: #pycon2019

Python Packaging Reinvented: The Wheel

 Adopted via PEP 427
 Follows the PEP 376 standard for distributions and PEP 

426 standard for package metadata
 Designed for distribution, cannot include .pyc files (but 

may include other pre-compiled resources)



@ehashdn :: #pycon2019

Wheels “make it easier to roll out” Python

 Pure wheels
– Only contain Python code
– May target a specific version of Python

 Universal wheels
– Python 2/3 compatible pure wheels

Extension wheels

??? pip install wheel
python setup.py bdist_wheel

pip install wheel
python setup.py bdist_wheel



@ehashdn :: #pycon2019

Wheels “make it easier to roll out” Python

 Pure wheels
– Only contain Python code
– May target a specific version of Python

 Universal wheels
– Python 2/3 compatible pure wheels

 Extension wheels
– ???



@ehashdn :: #pycon2019

Extensions without binary distributions

$ pip install cryptography  # source-only download

...
    c/_cffi_backend.c:2:10: fatal error: Python.h: No 
such file or directory
     #include <Python.h>
              ^~~~~~~~~~
    compilation terminated.
    error: command 'x86_64-linux-gnu-gcc' failed with 
exit status 1

$ sudo apt install python-dev  # get Python.h



@ehashdn :: #pycon2019

Extensions without binary distributions

$ pip install cryptography

...
    c/_cffi_backend.c:15:10: fatal error: ffi.h: No 
such file or directory
     #include <ffi.h>
              ^~~~~~~
    compilation terminated.
    error: command 'x86_64-linux-gnu-gcc' failed with 
exit status 1

$ sudo apt install libffi-dev  # get ffi.h



@ehashdn :: #pycon2019

Extensions without binary distributions

$ pip install cryptography

...
   build/temp.linux-x86_64-2.7/_openssl.c:498:10: fatal 
error: openssl/opensslv.h: No such file or directory
     #include <openssl/opensslv.h>
              ^~~~~~~~~~~~~~~~~~~~
    compilation terminated.
    error: command 'x86_64-linux-gnu-gcc' failed with 
exit status 1

$ sudo apt install libssl-dev  # get opensslv.h



@ehashdn :: #pycon2019

Extensions without binary distributions

$ time pip install cryptography

Successfully installed asn1crypto-0.24.0 cffi-
1.11.5 cryptography-2.3.1 enum34-1.1.6 idna-2.7 
ipaddress-1.0.22 pycparser-2.19 six-1.11.0

real 0m16.369s
user 0m15.823s
sys 0m0.627s



@ehashdn :: #pycon2019

Extensions with binary distributions

$ time pip install cryptography  # prebuilt binary

Successfully installed asn1crypto-0.24.0 cffi-
1.11.5 cryptography-2.3.1 enum34-1.1.6 idna-2.7 
ipaddress-1.0.22 pycparser-2.19 six-1.11.0

real 0m1.088s
user 0m0.980s
sys 0m0.108s



@ehashdn :: #pycon2019

What sort of black magic is this? ✨🔮



@ehashdn :: #pycon2019

Extension Wheels are safe to  pip install!

 Installing Python native extensions without wheels is painful
 Conda was developed to address this gap: why not use that?

– Like eggs, Conda was not adopted by a PEP

– Conda packages are not Python-specific, not supported by PyPI

– Conda packages are not compatible with non-Conda environments

 Wheels are compatible with the entire Python ecosystem



@ehashdn :: #pycon2019

What is a Python (Native) Extension?

 Native: the code was compiled specifically for my 
operating system

 Extension: this library extends Python’s functionality with 
non-Python code

 Example: cryptography
– It uses CFFI: the “C Foreign Function Interface” for Python



@ehashdn :: #pycon2019

Python code is not just Python.

For Python to harness its full potential,
it must be able to depend on C libraries. 



@ehashdn :: #pycon2019

C is a compiled language

// hello.c

#include<stdio.h>

int main(void) {
puts("hello

 world");
}

# a.out (hexadecimal)

0000000 7f45 4c46 0201 0100
0000008 0000 0000 0000 0000
0000010 0300 3e00 0100 0000
0000018 5005 0000 0000 0000
0000020 4000 0000 0000 0000
...

gcc
(compiler)gcc hello.c

hexdump a.out

ELF File



@ehashdn :: #pycon2019

Hexes and ELFs
$ readelf -a a.out
ELF Header:
  Magic:   7f 45 4c 46 02 01 01 00
           00 00 00 00 00 00 00 00
  Class:        ELF64
  Data:         2's complement, little endian
  Version:      1 (current)
  OS/ABI:       UNIX - System V
  ABI Version:  0
  Type:         DYN (Shared object file)
  Machine:      Advanced Micro Devices X86-64
...



@ehashdn :: #pycon2019

Hexes and ELFs
$ readelf -a a.out
...

Program Headers:

  Type      Offset             VirtAddr           PhysAddr
            FileSiz            MemSiz              Flags  Align

  INTERP    0x0000000000000238 0x0000000000000238 0x0000000000000238
            0x000000000000001c 0x000000000000001c  R      0x1

      [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

ELF interpreter



@ehashdn :: #pycon2019

Hexes and ELFs
$ readelf -a a.out

...

Relocation section '.rela.plt' at offset
0x4d0 contains 1 entry:

  Offset          Info           Type       
000000200fd0  000200000007 R_X86_64_JUMP_SLO

  Sym. Value     Sym. Name + Addend
0000000000000000 puts@GLIBC_2.2.5 + 0

Symbol Version



@ehashdn :: #pycon2019

Hexes and ELFs
$ readelf -a a.out

...
Version needs section '.gnu.version_r' contains
1 entry:

 Addr: 0x00000000000003f0  Offset: 0x0003f0  Link: 6 
(.dynstr)

  000000: Version: 1  File: libc.so.6  Cnt: 1

  0x0010:   Name: GLIBC_2.2.5  Flags: none  Version: 2



@ehashdn :: #pycon2019

Symbol Versions in Action
hello.c

#include<stdio.h>
...
puts("hello world");

a.out

.rela.plt
Symbol Name
puts@GLIBC_2.2.5

.gnu.version_r
File  Symbol Version
libc.so.6  GLIBC_2.2.5

libc.so.6

.gnu.version_d
Symbol Versions Available:
GLIBC_2.2.5
GLIBC_2.2.6
GLIBC_2.3
...
GLIBC_2.27

.dynsym
Type Name
FUNC puts@GLIBC_2.2.5



@ehashdn :: #pycon2019

What happens when we run this?

 OS parses “magic ELF” text
 OS invokes the ELF interpreter specified by the binary
 ELF interpreter loads any required files with valid versions
 ELF interpreter relocates the program code and 

dependencies in memory so that it can run
 This is called dynamic linking



@ehashdn :: #pycon2019

How to get C into 🐍?️?

 Old way: make users compile from source
– Obtaining dependencies is the user’s problem
– Compile against system library version at Python install time

 New way: users install pre-built Python wheels
– Bundle pre-compiled binary dependencies inside 

a Python wheel ✨



@ehashdn :: #pycon2019

How to get C into 🐍?️?

 The old ways have many problems
– Slow (compiling from source)
– Version mismatches
– Requires knowledge of system package management

 Python wheels solve this!
– Dependencies provided are the right versions and precompiled
– Wheels are Python-native: just pip install them



@ehashdn :: #pycon2019

But how can we ensure the pre-compiled
binaries are compatible with my system?



@ehashdn :: #pycon2019

Q: How can we ship compiled Python extensions
compatible with as many systems as possible?

A: Symbol versioning (manylinux)
and dependency bundling (auditwheel).



@ehashdn :: #pycon2019

What are manylinux and auditwheel?

 PEPs 513 and 571 define a set of permitted libraries and their 
symbol versions for Linux systems
– “Many” Linux systems are compatible with this standard

 manylinux is both the name of the policy and a Docker image
– manylinux1 (PEP 513): CentOS 5, i386/amd64 architectures

– manylinux2010 (PEP 571): CentOS 6, i386/amd64 architectures

 auditwheel is a tool to enforce the symbol policies



@ehashdn :: #pycon2019

What is auditwheel?

 auditwheel uses dark magic to vendor external binary 
dependencies into your wheel️👻️

 Empowers developers to build manylinux wheels without 
having to change their build processes
– Just build and install dependencies in the manylinux image

– auditwheel repair  will bundle dependencies into a 
compliant wheel



@ehashdn :: #pycon2019

Wheel Builder’s Pipeline for Linux

❷ ❸❶

❶ Add your code, dependencies to the manylinux Docker image
     and build against your supported Python versions/architectures

❷ Repair and inspect the built wheel with auditwheel for compliance

❸ Upload to PyPI!

Python Extension manylinux 
container

auditwheel 
repair + inspection

PyPI



@ehashdn :: #pycon2019

Want in on the magic?

 Help build wheels!

– Feedback enthusiastically welcomed ✨
 pythonwheels.com

– See what packages already build wheels
– Find examples for how to build yours (including Windows, OS X)

 github.com/pypa/python-manylinux-demo
– Simple demo to learn Linux wheelbuilding



@ehashdn :: #pycon2019

auditwheel needs a new maintainer

 I’m stepping down after three years!
– hashman.ca/leaving-pypa

 The manylinux Docker images and new 
manylinux2014 spec need some love, too



@ehashdn :: #pycon2019

Questions?

Questions? 



@ehashdn :: #pycon2019

Thanks to:

Red Hat
Nelson Elhage, Paul Kehrer, Donald Stufft

Talk resources: https://hashman.ca/pycon-2019



@ehashdn :: #pycon2019

Image License Information

 Tree Cat Silhouette Sunset: Public Domain (CC0) 
@besshamiti https://plixs.com/photo/3297/tree-cat-
silhouette-sunset 

 Happy Halloween! (Costume Dog): Public Domain (CC0) 
@milkyfactory https://flic.kr/p/ArW1N9


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

