

Teaching Python:
The Hard Parts

Elana Hashman
Rackspace Managed Security
PyCon 2016 – Portland, OR

Background

Community Data Science Workshops

Python Workshops for Beginners

Total Beginners

Platform Diversity

 Majority of mentors use OS X or Linux machines

 Majority of students use Windows machines

 Mentors may not have the experience to diagnose
common Windows-specific issues
– “python.exe not found” (PATH problems)
– String encoding for unicode on the console

– Binary files and line ending conversions

Platform Diversity

Example from PWFB

from urllib2 import urlopen

site = urlopen('http://placekitten.com/250/350')

data = site.read()

kitten_file = open('kitteh.jpg','w')

kitten_file.write(data)

kitten_file.close()

Platform Diversity

demon kitty! # normal kitty

open('kitteh.jpg','w') open('kitteh.jpg','wb')

Platform Diversity

 Takeaway:
– You must anticipate cross-platform issues for your

participants
– Make sure you test your examples on multiple

platforms, especially Windows

The Command Line

 Most Python tutorials start by running python or
ipython on the command line

 Most total beginners have never used the
command line before

 We don't tend to spend a lot of time teaching
about the OS shell before jumping into the Python
shell

The Command Line

 Beginners get confused between shells, typing OS
commands into the Python shell and vice versa

me@mylaptop:~$ python
Type "help", "copyright", "credits" or "license"
for more information.
>>> ls
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'ls' is not defined

The Command Line

 Platform Diversity: Windows users may need to
use dir instead of ls to list files; most OS shell
tutorials don't cover these users

 Takeaway:
– When teaching your students to interact with the

Python shell, first spend some time talking about the
OS shell

– Teach students specific commands for each shell
– Show students how to differentiate between them

Python 2 vs. Python 3

 “What version do I install?”

 Worse: no one asks and the whole class has
installed a variety of different versions of Python

 Python 3 libraries are incompatible with Python 2
and have different documentation

 Search engine indexing is not as good for Python
3 stuff, so beginners may accidentally fetch the
wrong docs

Python 2 vs. Python 3

 Takeaway:
– Making everything Python 2/3-compatible can take your

time away from curriculum-building and may end up
confusing beginners

– Advice: Pick one version of Python that's right for you and
your group

– Be aware of Python versioning at install time
– Make sure your entire class uses the same version of

Python uniformly

A little more advanced

Methods vs. Functions, OOP

 “Why do we write foo.keys() but range(10)?
Why not keys(foo)?”
– “One is a function and one is a method”

 “When do I use foo.sort() versus sorted(foo)?”
– “One mutates foo and the other doesn't”

 Trying to explain this to beginners can overwhelm
them

 Students don't have the tools to understand this yet

Methods vs. Functions, OOP

 Takeaway:
– Different syntax for invoking subroutines can be

confusing to beginners and mentors should be aware
of this

– This is a good point to start introducing students to
documentation, to clarify what syntax to use

– Advice: don't introduce OOP to students that don't have
prior programming experience. Or, put it near the end
of your curriculum

Testing

 Tests are a common blind spot for curriculum

 The later you introduce testing, the more optional
it seems to your students

 You want to fit as much shiny and cool stuff as
possible!
– Testing = “eating your vegetables”

 Is this something that has a place in curriculum for
complete beginners?

Testing

 unittest is easy to set up and get working

 Tests are a powerful tool for reasoning about the
correctness of code and building confidence as a
developer

 Takeaway:
– Consider including some curriculum on testing
– Lead by example: include tests in your sample code

Putting Together Modules

 Students in workshops are usually taught how to
work with the Python interpreter or single files

 What do you do when code gets too big to fit in a
single file?
– Ask a mentor
– Despair

 Documentation is poor
 Version differences can make this very challenging

on multiple axes

Putting Together Modules

 Teach your students by example. Provide templates:
.
├─┬ catan/
│ ├── __init__.py
│ ├── analyzer.py
│ ├── cli.py <------------- # Include other code w/:
│ └── config.py |
├─┬ tests/ | import catan.analyzer
│ ├── analyzer_test.py | import catan.config
│ └── cli_test.py |
├── README.md | ...
├── setup.py
└── requirements.txt

Putting Together Modules

 We can help ease the documentation gap/student
confusion by covering this

 This is a common curriculum gap, possibly
because it's so “obvious”

 Takeaway:
– If you want students to walk away from your workshop

with the ability to ship working software, you should
cover this topic or provide future resources

Intermediate students

Scoping

 Intermediate students will ask questions about
Python's scoping to learn how to reason about
their code
– Is it lexical? Dynamic? Something else?

 Let's go over a common, confusing example

Scoping

cat = 'meow'

def cat_changer():

 cat = 'purr'

 print 'inside cat: ', cat

cat_changer()

print 'outside cat: ', cat

=> inside cat: purr
=> outside cat: meow

Scoping

 Putting Together Modules: sharing state between
two files can be tricky because of scoping rules

 Advice: reference shared state using caution and
fully-qualified namespaces
– Good pattern: have your students create a config.py

package that stores all shared global state

Scoping

catan/config.py

CAT_DB = 'postgres://localhost:5555'

CAT_LOG = '/home/catlover/var/log/cat.log'

catan/cli.py

def main():

 # ...
 catan.analyzer.run_analyzer(catan.config.CAT_DB,
 catan.config.CAT_LOG)

Scoping

 Takeaway:
– Python's scoping rules can be tricky for even

experienced programmers new to the language
– Try to cover the rules in detail and cover “heads-up”

scenarios where students may run into trouble
– Guide your students on how to use global

variables/state

Packaging and Deployment

 Students want to ship their code and see it in
action!
– “How do I write a web app in Python?”
– “A mobile app?”
– “How do I package and deploy a command-line

Python application?”
– “How do I write a Python service/daemon?”

 Maybe abandon hope

Packaging and Deployment

 There are lots of different moving parts to packaging
and developing Python software
– Learning to navigate setuptools and setup.py
– Package managers: pip/easy_install/conda?

– Virtual environments for development: virtualenv vs.
pyvenv

 This is important operational knowledge for new
Python programmers

 Advice: Sharing “one true way” for your students is
better than confusing them with too many options

Packaging and Deployment

 Okay, we know how to develop the software and how
to package it at a Python-level; let's deploy it

 How do we address dependency management?
– At the system or user-level? What about OS-level

dependencies?

 What about deployment processes?
– git and pip?
– Docker?
– PEX?
– dh-virtualenv and Debian packages?

Packaging and Deployment

 Takeaway:
– If you have the time, briefly walk through setup.py

and setuptools for building packages

– If you work with external libraries and installing them is
in scope of your workshop, cover virtual environments

– Deployment: walk your students through one option
that makes sense for their background and will enable
them to sustainably run their software

For all levels

General advice

 Be aware of your own shortcomings
 Less is more
 Bring together a supportive educational team
 Seek feedback from your students and mentors
 Treat your students with patience, empathy, and

respect
 Encourage your students to build community

Questions?

Thank you!

Thanks to: Peter Barfuss, Murphy Berzish,
Fatema Boxwala, Paul Kehrer, Rackspace

Talk links and resources can be found at
https://hashman.ca/pycon-2016/

https://hashman.ca/pycon-2016/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

