

Bringing OOP Best Practices to the
World of Functional Programming

Elana Hashman
Computer Science Club – Fall 2016

$ whoami
ehashman
$ ldapsearch -x uid=ehashman
extended LDIF
#
LDAPv3
base <dc=csclub, dc=uwaterloo, dc=ca> (default) with scope subtree
filter: uid=ehashman
requesting: ALL

ehashman, People, csclub.uwaterloo.ca
dn: uid=ehashman,ou=People,dc=csclub,dc=uwaterloo,dc=ca
uid: ehashman
cn: Elana Hashman
loginShell: /bin/bash
uidNumber: 21685
gidNumber: 21685
homeDirectory: /users/ehashman
program: Alumni
term: f2010
...
term: w2018
objectClass: account
objectClass: member
objectClass: posixAccount
objectClass: shadowAccount
objectClass: top

DESIGN PATTERNS

Functional programming?

Object-oriented programming?

Programming Paradigms

 What is Object-Oriented Programming (OOP)?
– Program logic is organized around objects, which store

data as properties and algorithms for the data as
methods

– Objects are described by classes, which can inherit from
one another

– Common recipes/best practices are codified as design
patterns

 Examples
– C++, Java, C#, Python

Programming Paradigms

 What is Functional Programming (FP)?
– Logic is codified and evaluated as pure functions,

avoiding the mutation of state
– Commonly characterized by the use of first-order

functions, which can be passed around as arguments,
and higher-order functions, which take functions as
arguments

 Examples
– Lisp (with various dialects, such as Racket), Haskell,

OCaml, F#

The fateful interview

“Programming Tropes”

…
a.k.a. DESIGN PATTERNS

What is “good code?”

“I can't tell you what bad code
looks like, but I know it when I see it.”

- Anonymous Programmer

Don't Repeat Yourself (DRY)

Ya Ain't Gonna Need It (YAGNI)

Keep It Simple, Senator (KISS)

(defn common-logic
 [data case-specific-logic]
 ...)

(defn data1-specific-logic [args] ...)

(defn data2-specific-logic [args] ...)

(for [[data fn] data-and-fns]
 (common-logic data fn))

I.
Different programming paradigms are

not as different as you might think.

II.
Different programming paradigms

do have different design philosophies.

“It is better to have 100 functions
operate on one data structure than
10 functions on 10 data structures.”

- Alan J. Perlis

III.
No paradigm is objectively

“better,” but each has advantages
in certain situations.

A common critique of the “Gang
of Four” 1995 Design Patterns book

was that many of the patterns
served as workarounds for

language limitations of C++.

In 1996, Peter Norvig claims that 16 of the 23
patterns in the Gang of Four book are invisible
or simplified in Lisp!
 Abstract Factory, Flyweight, Factory Method, State, Proxy,

Chain of Responsibility → first-class types
 Command, Strategy, Template, Visitor → first-class

functions
 Interpreter, Iterator → macros
 Mediator, Observer → method combination
 Builder → multimethods
 Façade → modules

Functional programming
language features can reduce the
need to use fully-implemented

class-based design patterns.

Some Notable FP Language Features

Immutability

 What is it?
– Data cannot change state after its creation
– Functions cannot have “side effects”

 Improves ability to reason about code

 Simplifies unit testing

 Discourages the use of global mutable state, i.e.
Singleton pattern

First-Class Functions

 What are they?
– Functions can be passed as arguments
– Lexical scoping allows for local bindings of values

 Currying gives us function Factories
((fn [a] (fn [b] (does-stuff a b))) “yo”)

=> (fn [b] (does-stuff “yo” b)) ;; a := “yo”

 Treating functions like we treat data gives us
programmable power over them

Macros and Pattern Matching

 What are they?
– Macros: we can write code to generate code
– Pattern Matching: match data according to patterns!

 Enables writing new grammar and evaluating it
with ease, i.e. Interpreter pattern

 Brevity means devs can write more with less time,
and the resulting code needs less maintenance

 Pattern match example...

Macros and Pattern Matching

(defn message-origin
 [message]
 (match [message]
 [{:parsed {:metadata
 {:customer-id-string _}}}] :type1
 [{:parsed {:id _
 :type _
 :critical _
 :message _}}] :type2
 [{:parsed _}] :json
 :else :syslog))

Some Examples of Design Patterns

The Façade and Adapter Patterns

 What are they?
– Hide an existing API by providing a new one on top

The Façade and Adapter Patterns

 When to use them?
– Provide a unified or simplified interface for other code
– Technical debt wrangling: standardize an interface so

you can refactor the original code behind it
 When not to use them?

– Too many layers of indirection from the original API can
be fragile

 How to use them with FP?
– Just like you would in the OOP world!
– Write modules with public functions instead of classes

(defn yucky-API
 [hot dog other-infos] ...)

(defn consumes-yucky-API []
 (yucky-API true true

{:hot true
 :dog true
 :sundaes “???”}))

(defn nice-API
 “helpful docstring!”
 [other-infos]
 (let [{:keys [hot dog]} other-infos]
 (yucky-API hot dog other-infos)))

The Template Pattern

 What is it?
– Defines the majority of an algorithm in an operation,

deferring some steps to subclasses

The Template Pattern

 When to use it?
– Nearly identical data and data operations
– Need to stub out a small amount of functionality

 When not to use it?
– Use abstract base classes or similar very sparingly
– In OOP land: prefer composition over inheritance

 How to use it with FP?
– Pass in stub functions as arguments to common logic

instead of implementing stubs on subclasses

(defn common-logic
 [data case-specific-logic]
 ...)

(defn data1-specific-logic [args] ...)

(defn data2-specific-logic [args] ...)

(for [[data fn] data-and-fns]
 (common-logic data fn))

The Strategy Pattern

 What is it?
– Conditionally switch algorithms in a given context

The Strategy Pattern

 When to use it?
– Encapsulates dispatching many variants of a similar

algorithm
– Feature-flagged functionality

 When not to use it?
– When strategies fundamentally differ (e.g. return type)
– Adds complexity and code branching

 How to use it with FP?
– Pass in algorithm variants as first-order functions

(defn strategy1 [args] ...)

(defn strategy2 [args] ...)

(apply-strategy-a [strategy1 strategy2])

(apply-strategy-b
 (fn [cond] (if cond
 strategy1
 strategy2))

Summary

We covered some
design patterns from
all three categories!

Structural
– Adapter
– Façade

Behavioural
– Interpreter
– Strategy
– Template

Creational
– Factory
– Singleton

Conjecture: You can use functional
programming languages to write

industry software.

Evidence: My team!

~~join the party~~

**THIS ADVICE PROVIDED WITH
ABSOLUTELY NO WARRANTY**

Thank you!

Thanks to: Nik Black, Fatema Boxwala,
Shane Wilton, Rackspace

Talk links, references, and resources can be found at
https://hashman.ca/osb-2016/

https://hashman.ca/osb-2016/

Talk References

 Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software (1995)
– Referred to as the “Gang of Four”

 Peter Norvig, “Design Patterns in Dynamic
Languages” (1996)

Image Licenses

 Public Domain
– Meta-UML Diagram
– Adapter Pattern UML Diagram
– Strategy Pattern UML Diagram

 Creative Commons Share Alike 3.0 Unported
License
– UML diagram of composition over inheritance
– Template Method: UML Class Diagram
– Facade Design Pattern in UML

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

